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T E T  O F  A TRUSS-CORE SANIMICH CYLINDER 

LOADED TO FAIWRE I N  BENDING 

By James P. Peterson and James Kent Anderson 
Langley Research Center 

SUMMARY 

Results of a buckling tes t  of a 10-foot-diameter (3-m) truss-core sandwich 
cylinder loaded i n  bending are presented. 
t he  growth of wal l  buckles; some of t he  buckles exis ted as i n i t i a l  imperfec- 
t i ons  i n  the  cylinder w a l l  p r i o r  t o  tes t ing .  Fai lure  occurred suddenly a t  a 
load corresponding t o  approximately 62 percent of  t h e  load computed with the  
use of c l a s s i ca l  small-deflection buckling theory. 

The cylinder f a i l e d  as a r e su l t  of 

INTRODUCTION 

The truss-core sandwich cylinder i s  an a t t r a c t i v e  high-strength, low-mass 
s t ruc ture  f o r  supporting a x i a l  loads or bending moments which induce a x i a l  com- 
pressive s t resses  i n  the  w a l l  of t he  cylinder. The  a t t ract iveness  s t e m s  p r i -  
m a r i l y  f rom ana ly t ica l  s tudies ,  inasmuch a s  tests of sandwich s t ructures  are 
scarce f o r  sandwich cylinders i n  general and a re  p rac t i ca l ly  nonexistent f o r  
truss-core sandwich cylinders. 
truss-core sandwich cylinders,  but t he  proportions of t h e  sandwich w a l l s  of the 
cylinders i n  t h a t  invest igat ion were derived on the  bas i s  of column theory 
instead of cylinder theory. A s  a consequence of t h e  wal l  proportioning used, 
t he  elements of  t h e  walls of t h e  cylinders buckled local ly ,  presumably long 
before cylinder buckling would have occurred i n  t h e  absence of elemental 
buckling; hence, t he  t e s t s  of reference 1 yielded l i t t l e  information on the  
load-carrying a b i l i t y  of truss-core sandwich cylinders. 

Reference 1 reports  t h e  r e su l t s  of t e s t s  of 

The present paper reports  t he  results of a bending tes t  of a R e d  41 
truss-core sandwich cylinder of all-welded construction. The cylinder w a s  
designed with the  use of a contemporary cylinder analysis  t o  be nearly optimum 
from a high-strength, low-mass point of view; t h e  analysis  was based on the  use 
of c l a s s i ca l  buckling theory and a reduction f ac to r  obtained from an extrapola- 
t i o n  of t e s t  r e su l t s  of conventional thin-wall cylinders. The cylinder f a i l e d  
as a r e s u l t  of wal l  buckling a t  a load of approximately 80 percent of t h e  
design load (62 percent of t he  c l a s s i ca l  buckling load),  presumably because of 
imperfections i n  cylinder geometry which exis ted p r i o r  t o  loading. 

i IIIIIIIIIIIIII I I 1 1  I 1 1 1 1  I 1 1 1  1 1 1 1  I I 



The un i t s  used f o r  t he  physical quant i t ies  i n  t h i s  paper are given both i n  
the  U.S. Customary Units and i n  the  In te rna t iona l  System of Units (SI)  (ref. 2) .  
Appendix A presents f ac to r s  r e l a t ing  t h e  two systems of un i t s  used i n  t h e  pres- 
ent investigation. 

bending s t i f fnes ses  of cylinder wal l  i n  axial and circumferential  
direct ions,  respectively 

twist ing s t i f f n e s s  of cylinder w a l l  

Young Is modulus 

extensional s t i f fnesses  of cylinder w a l l  i n  axial and circumferen- 
t i a l  direct ions,  respectively 

shear s t i f f n e s s  of cylinder w a l l  

depth of sandwich wal l  measured between centroids of two face sheets 

buckling coeff ic ient ,  

length of cylinder 

integer  

applied moment on cylinder 

applied moment on cylinder a t  collapse 

a x i a l  load pe r  un i t  length of cylinder circumference 

axial load per  un i t  length of cylinder circumference a t  buckling, as 
given by c l a s s i ca l  theory 

axial load pe r  u n i t  length of cylinder circumference a t  f a i l u r e  
(buckling) of cylinder and a t  circumferential  s t a t ion  of highest 
compressive s t r e s s  ( e  = 0 )  

radius of cylinder 

thickness of face sheet of  sandwich 

thickness of sheet mater ia l  of core of sandwich 

l a t e r a l  def lect ion of cylinder w a l l  



coordinates of cylinder w a l l  i n  a x i a l  and circumferential  direct ions,  
respectively 

curvature parameter, $&l - PxPy) 

r a t i o  of cylinder length t o  half-wavelength of buckle i n  circumfer- 
2 x en t i a1  direct ion,  

angle defining distance along circumference of cylinder from gener- 
a t o r  of  maximum compression s t r e s s  

half-wavelength of buckle i n  circumferential  d i rec t ion  

Poisson's r a t i o s  of sandwich w a l l  associated with bending of w a l l  i n  
a x i a l  and circumferential  direct ions,  respectively 

Poisson's r a t i o s  of sandwich w a l l  associated with s t re tching of w a l l  
i n  axial and circumferential  direct ions,  respectively 

TEST SPECIMEN 

t e s t  specimen consisted of a Re& 41 all-welded truss-core sandwich 
cylinder approximately 10 f e e t  (3  m) i n  diameter. The face sheets of the  sand- 
wich were seam welded t o  a corrugated core (see f i g s .  1 and 2)  with resistance- 
formed spot welds spaced approximately 1/8 inch ( 3  am) apart .  
fabr icated i n  18O segments which extended the  e n t i r e  length of t he  cylinder. 
The inside face  sheet w a s  welded t o  the  core with the panel i n  a f l a t  posi t ion 
and without the  use of mandrels. 
s ide face sheet t o  the  core; the  panel w a s  held i n  a contoured posi t ion during 
this operation. After  the  mandrels were removed by pul l ing,  t he  panel contour 
deviated somewhat from the  desired shape. This deviation w a s  corrected by 
loading the  panel with l a t e r a l  loads and by peening (sandblasting) the panel 
with glass  beads. 

The w a l l s  were 

Copper mandrels were used i n  welding the out- 

The panels were welded together along longi tudinal  j o in t s  (see f i g .  1) with 
rodless tungsten i n e r t  gas welding; t he  jo in t s  had been previously machine 
f i t t e d .  
cylinder. The cylinder t e s t  sect ion w a s  terminated a t  each end by formed hat- 
sect ion r ings which were fusion spotwelded t o  the  ins ide  face sheet of the  
cylinder. The scalloped doublers a t  each end of the  cylinder a r e  outside the  
test section; they were fusion spotwelded t o  both the  ins ide  and outside face  
sheets of the  cylinder t o  prevent l o c a l  buckling and possible  f a i l u r e  of t he  
cylinder near the  ends from s t r e s s  concentrations a t  these locations.  

The jo in t s  were welded from both the  inside and t h e  outside of the 

The complete cylinder w a s  heat- t reated and s t ress-rel ieved a f t e r  fabr ica-  
t i o n  by heating i n  an argon-purged atmosphere a t  1650~ F (ll72O K )  f o r  4 hours, 
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air-cooling t o  room temperature, heating t o  l4OO0 F (1033O K )  f o r  16 hours, and 
again air-cooling t o  room temperature. 

As a result of weld shrinkage, pa r t i cu la r ly  t h a t  from welding heavy adaptor 
rings t o  each end of the tes t  cylinder, t h e  unloaded cylinder had a s l i g h t  
barrel- l ike shape with various o ther  imperfections superimposed upon t h e  ba r re l  
shape. 
compression i s  given i n  figure 3. 
order of one-half t h e  w a l l  thickness a re  prevalent. 
ness i s  0.242 in .  (0.615 cm).) 
with t h e  use of a d i a l  gage t h a t  w a s  magnetically attached t o  a straightedge 
which res ted  against  machined end f ix tu re s  a t  each end of t h e  cylinder. The 
dial gage could be moved along t h e  straightedge. I n  a reading posit ion,  t h e  
plunger of t he  d i a l  gage res ted  against  t he  t e s t  cylinder, and readings of t he  
gage indicated t h e  distance between the  cylinder w a l l  and the  straightedge. 
Readings of t he  d i a l  gage were taken a t  desired locations.  

A contour map of t he  area of t he  test  cylinder subsequently loaded i n  

(The average w a l l  thick- 
The map indica tes  t h a t  imperfections on the  

Figure 3 w a s  constructed from measurements made 

Another apparent e f f ec t  of weld shrinkage w a s  t h e  troughing of t he  face 
sheets between corrugation c re s t s  i n  some areas of t he  tes t  cylinder. There 
w a s  considerable troughing near each end of t he  t e s t  cylinder; however, most 
of t he  troughs did not extend beyond the  hat-section rings which marked the  
extremities of t he  t e s t  section. Some troughs i n  the  face sheets near t he  ends 
of t he  cylinder are v i s i b l e  i n  f igure  4. Longer troughs, some of which tra- 
versed the  e n t i r e  length of t h e  cylinder, were v i s i b l e  near longitudinal w e l d  
l i n e s  joining panel segments. Such troughs probably had a detrimental e f f ec t  
on the  circumferential  w a l l  s t i f fnes ses  and t h e  buckling load of t he  cylinder. 
Hence, a 54' segment of t h e  cylinder ( the  l a rges t  segment without t he  longer 
troughs t h a t  could be found) w a s  chosen as the  area of t h e  t e s t  cylinder t o  be 
subjected t o  t h e  highest  compressive stresses. 

Photomicrographs of cross sections of t he  cylinder w a l l  ind ica te  that con- 

The photomicrograph of 
s iderable  oxidation ( f ig .  ? (a ) )  and intergranular  corrosion ( f ig .  ? (b ) )  of the 
Renk 41 w a l l  occurred during the  heat-treating process. 
f igure  5 ( a )  indicates  t h a t  exposed surfaces of t he  w a l l  mater ia l  were t rans-  
formed t o  some o ther  material (presumably t o  an oxide of nickel)  during heat 
t rea t ing .  The e f f ec t  of t h e  transformation and t h e  intergranular  corrosion 
on t h e  e l a s t i c  proper t ies  of t h e  w a l l  material w a s  not known. 
of compression tes ts  of s m a l l  coupons cut f romthe  w a l l  of t he  cylinder were 
used t o  obtain e l a s t i c  propert ies  of  t he  w a l l .  

Hence, results 

Typical results of compression tests of coupons cut from the  wall of the  
cylinder are presented i n  figure 6; t he  curves are reasonably l i n e a r  i n  the  
load range of  i n t e r e s t  f o r  t he  tes t  cylinder (N < 2 kips/in. (330 kN/m)) ,  but 
they become somewhat nonlinear at higher loads. The specimens f a i l e d  abruptly 
as a r e su l t  of l o c a l  buckling (cr ippl ing)  at loads corresponding t o  t he  termi- 
nation of t he  curves. Compression tests on several  coupons were conducted. 
The mass and thickness of each coupon were obtained p r i o r  t o  tes t ing ,  and the  
thicknesses of the  face sheets and core of each coupon were obtained after 
tes t ing .  The t e s t ed  coupons were cut apar t  t o  f a c i l i t a t e  t he  taking of meas- 
urements. The %ests and measurements indicated the  following typ ica l  values 
of a x i a l  w a l l  s t i f f n e s s  and modulus of e l a s t i c i t y :  
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E, = 1050 kips/in. (184 MN/m) 

and 

E = 31 500 ks i  (217 GN/m2) 

The measured values f o r  t h e  sandwich depth h, t he  face-sheet thickness ts, 
and the  thickness of core mater ia l  a r e  given i n  figure 1. A value of 

0.298 pound per  cubic inch (8.25 Mg/m3) ( re f .  3) w a s  used f o r  t h e  density of 
t he  wal l  mater ia l  i n  determining cross-sectional areas from the  mass measure- 
ments of t he  coupons; t h e  areas thus obtained checked with areas computed by 
using t h e  measured thicknesses and the  known w a l l  geometry. I n  addition, t h e  
value obtained f o r  Young's modulus checked with the  tabulated value f o r  t h i s  
quantity i n  reference 3 .  

TEST PROCEDURE 

The t e s t  cylinder w a s  loaded i n  bending with the  use of a loading frame 
and a hydraulic t e s t i n g  machine. (See f ig .  7 . )  The heavy conical sections on 
e i the r  end of the  t e s t  cylinder were used t o  adapt the  10-foot-diameter (3-m) 
cylinder t o  smaller exis t ing fixtures. The presence of s t r ay  loads during 
t e s t ing  was minimized insofar  as pract icable  by employing r o l l e r s  between 
moving surfaces and by counterbalancing the  f ix tu re s  near t h e i r  centers of 
gravity.  
as  w e l l  as between the  loading frame and the  t e s t ing  machine t o  allow the  
cylinder t o  shorten during loading and t o  help r e s t r i c t  t he  loads a t  t he  
r o l l e r  locations t o  normal loads. 
surfaces against  which they reacted. 

Rollers were used between the  loading frame and t h e  f loo r  supports 

The r o l l e r s  w e r e  casehardened, as were the  

Resistance-type wire s t r a i n  gages were mounted i n  a back-to-back posi t ion 
at various locations on the  t e s t  cylinder p r io r  t o  t e s t ing ,  and values of  t he  
s t r a ins  from the gages were recorded during t h e  test  with the  use of the Langley 
cent ra l  d i g i t a l  data  recording f a c i l i t y .  
mine the  s t r a i n  d is t r ibu t ion  i n  the  cylinder and t o  help detect  buckling of the 
cylinder. 

D a t a  from the  gages were used t o  deter-  

TEST FCESULTS 

The measured s t r a i n  d i s t r ibu t ion  i n  t h e  tes t  cylinder i s  compared with the 
calculated d i s t r ibu t ion  i n  figure 8. The measured s t r a in ,  which w a s  obtained by 
averaging the  values from gages located on the  ins ide  and outside surfaces of 
t h e  t e s t  cylinder, i s  shown f o r  th ree  longi tudinal  s ta t ions  on the  tes t  cylinder. 
The calculated s t r a i n  w a s  obtained with the use of the  previously given value 
of t he  axial w a l l  s t i f fnes s ,  increased by 4 percent t o  account f o r  the w a l l  
material added f o r  core sp l ices  and wal l  sp l ices  (see f i g .  l), and with the  use 
of t he  standard beam equation, i n  which s t r a i n  i s  assumed l i n e a r  with cylinder 
depth. The measured s t r a i n s  are generally greater  than the  calculated s t r a ins  
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i n  the  region of highest compressive s t r e s s  (region near 
ured values sca t te r ing  about the  curve f o r  calculated s t ra in .  
ured s t r a i n  f a l l  somewhat below the  calculated curve i n  regions of lower com- 
pressive stress. 
on the tension s ide of the  cylinder i n  the  area of highest t ens i l e  stress. 
values of measured strain on the tension s ide of the  cylinder (not shown i n  
f ig .  8) were of n e a r l y t h e  same magnitude a s  those of t he  calculated curves i n  
figure 8, but were of opposite sign. 
shown i n  figure 8 indicates  t h a t  the s t i f f n e s s  properties of the walls of the  
test cylinder a re  known with reasonable accuracy. 

€3 = Oo) with the meas- 
Values of meas- 

In  addition, s t r a i n  measurements were taken a t  a few locations 
The 

The agreement between calculation and t e s t  

Selected strain-gage data from gages mounted on the inside and outside sur- 
faces of the  t e s t  cylinder i n  the area of high compressive s t r e s s  a re  given i n  
f igure 9. 
wall  bending during the  application of the  load. 
s ta r ted  ear ly  and increased as  load was increased. 
from the s t r a i n  gages a t  location 9.) 
location 9 with the contour p lo t  of f igure 3 indicates that an imperfection 
(buckle) which existed before the s t a r t  of loading grew with the  application of 
the load and continued t o  grow u n t i l  cylinder f a i lu re .  Jus t  p r io r  t o  fa i lure ,  
the buckle configuration was such t h a t  bending s t resses  i n  the wall increased 
a t  a f a s t e r  r a t e  than membrane s t resses .  The observed behavior suggests that 
the imperfection influenced the location a t  which buckles developed, and perhaps 
influenced the  load l eve l  a t  which f a i l u r e  occurred. Furthermore, observed 
behavior indicates  that well-designed truss-core sandwich cylinders should be 
proportioned so that the loca l  buckling s t r e s s  of the  face sheets i s  somewhat 
greater  than the  membrane s t r e s s  a t  which general buckling is  expected; other- 
wise the  cylinder might be expected t o  f a i l  when the  combination of membrane 
s t resses  and wall-bending s t resses  reaches the  loca l  buckling s t r e s s  of the  
wall. Jus t  how much greater  the l o c a l  buckling s t r e s s  should be f o r  maximum 
efficiency must be determined from experience because it presumably depends 
upon how well  the  geometry of the cylinder approximates the  desired geometry. 

The data indicate  that the t e s t  cylinder experienced considerable 
I n  some cases, w a l l  bending 

(Note par t icu lar ly  the  data 
A correlat ion of the  data obtained a t  

A photograph of the cylinder a f t e r  f a i l u r e  i s  given i n  f igure 10; the area 
of maximum compressive s t r e s s  f r o m t h e  bending load i s  near the top i n  the 
photograph. 
the area of maximum compressive s t ress .  

A view from inside the  cylinder i s  shown i n  f igure 11, again f o r  

The t e s t  cylinder f a i l e d  a t  an applied moment of 24 100 in-kips 
(2.72 Mn-N), which corresponds t o  a s t r e s s  of about 38 ks i  (400 MN/m2). 
f a i l i n g  load, i n  terms of load per u n i t  length of circumference a t  the  extreme 
compression f iber ,  i s  p lo t ted  i n  f igure I 2  f o r  comparison with calculations of 
the buckling strength of the  cylinder. The ordinate of f igure 12 i s  the  r a t i o  
of the t e s t  load t o  the  calculated buckling load, where the maximum compressive 
load per un i t  length of cylinder circumference Ntest was determined with the  
use of the standard beam equation; the  calculated load Nx was obtained from 
c la s s i ca l  small-deflection buckling theory (eq. (A4) of re f .  4)  by using the 
value f o r  ax ia l  wall  s t i f fnes s  presented previously and by assuming t h a t  the 
transverse shear s t i f fnes s  of the core w a s  large.  The e l a s t i c  constants needed 
f o r  the  calculation were computed with the  use of the  equations of reference 5. 
Failure  occurred a t  62 percent of the  calculated load 

The 

N,. 
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The consequences of t he  assumption of a large transverse shear s t i f f n e s s  
I n  of t h e  core were checked by making a simple but conservative calculation. 

this calculation, t he  transverse shear s t i f fnes ses  of t he  core i n  t h e  axial and 
circumferential  direct ions were both assumed t o  be equal t o  t h a t  given i n  re f -  
erence 6 for t he  circumferential  or weak direction. The calculation, which w a s  
made with the  use of equation (B9) of reference 4, indicated that the  assumption 
o f  a large transverse shear s t i f fnes s  changed the  calculated buckling load by 
l e s s  than 1 percent. 

A check calculat ion was  a l so  made t o  assess t h e  va l id i ty  of t he  assumption 

The calculat ion w a s  made 
of simply supported ends, which i s  inherent i n  t h e  calculations discussed previ- 
ously for t he  buckling s t rength of t he  t e s t  cylinder. 
with the  use of t he  equations f o r  clamped cylinders presented i n  appendix B; 
a third-order determinant w a s  used t o  approximate the buckling load. 
buckling load computed i n  t h i s  manner w a s  approximately 4 percent grea te r  than 
t h a t  computed with t h e  assumption of simple support. Because ac tua l  end condi- 
t ions  of t h e  t e s t  cylinder probably l i e  somewhere between clamped and simply 
supported, calculations based on t h e  simple-support assumption evidently e n t a i l  
l i t t l e  error .  

The 

The abscissa of f igure  12 i s  a generalization of the  radius-thickness r a t i o  
f o r  conventional thin-wall  cylinders. 
attempts t o  cor re la te  experimental data on composite s t ruc tures  with data on 
conventional thin-wall  cylinders. (See re fs .  7 and 8.)  The s o l i d  curve i n  
f igure  12 (adapted from f ig .  2 of ref .  9) represents the  lower bound of NASA 
t e s t  data on buckling of conventional thin-wall  cylinders i n  bending; it w a s  
used i n  the  design of  t h e  t e s t  cylinder. The dashed curve represents the  lower 
bound of t e s t  data on buckling of conventional thin-wall  cylinders from various 
sources; it w a s  adapted from equation (11) of reference 10. 

This r a t i o  has been used previously i n  

The c i r cu la r  symbol denoting the  t e s t  cylinder ( f ig .  12) l i e s  considerably 
below the  curve f o r  NASA t e s t s  and just above the  curve which represents t he  
lower l i m i t  o f  data  from various sources. ~y contrast ,  reference 8 presents 
r e su l t s  from recent tests of honeycomb sandwich cylinders which agreed wel l  with 
the  curve f o r  NASA t e s t s  on conventional cylinders. The sandwich t e s t  cylinders 
of reference 8 were reasonably devoid of  imperfections resembling buckles; t he  
present t e s t  cylinder w a s  not, and t h e  imperfections a re  believed t o  account f o r  
t he  comparatively low f a i l i n g  load of t h e  present cylinder. 

I n i t i a l  imperfections i n  the  t e s t  cylinder were evidently a s  damaging a s  
those ex is t ing  i n  the  most poorly constructed o f  t he  conventional thin-wall  
cylinders from which t h e  dashed curve of f igure  12 w a s  derived. 
imperfections i n  the  tes t  cylinder were readi ly  measurable suggests t h a t  it may 
be possible  t o  cor re la te  t h e  buckling s t rength of sandwich cylinders,  which 
have considerably th icker  w a l l s  than conventional thin-wall  cylinders, with 
i n i t i a l  imperfections. However, such a t a sk  has proved ra ther  formidable f o r  
thin-wall cylinders. 
account f o r  imperfections i n  only a general  way - f o r  example, t h e  two design 
curves of figure 12. 

The f a c t  t h a t  

A s  a result, use has been made of design procedures which 
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CONCLUDING REMARKS 

The r e s u l t s  of a buckling tes t  of a truss-core sandwich cylinder loaded i n  
bending are presented and discussed. 
growth of w a l l  buckles, some of which exis ted as measurable i n i t i a l  imperfec- 
t ions  before t h e  start of loading. The cylinder f a i l e d  a t  a load corresponding 
t o  approximately 62 percent of t h e  load predicted on the  bas i s  of c l a s s i ca l  
small-deflection buckling theory. This discrepancy between theory and tes t  i s  
comparable t o  that which would be obtained by an extrapolation of  t he  lower 
l i m i t  of buckling data from various sources on conventional thin-wall cylinders. 

The cylinder f a i l e d  as a r e su l t  of t h e  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va . ,  August 19, 1965. 
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APPENDIX A 

CONVERSION O F  U.S. CUSTOMARY UNITS TO S I  UNITS 

The Internat ional  System of Units (SI) w a s  adopted by the  Eleventh General 
Conference on Weights and Measures, Par is ,  October 1960, i n  Resolution No. 12 
(ref. 2) .  Conversion f ac to r s  for t he  un i t s  used herein are given i n  the  f o l -  
lowing t ab le  : 

- . . . . . .  ("1 - . 

~ 7 . 6 8  x 103 
1.3048 
1.0254 

L. 751 x lo5 
113.0 
5.895 x lo6 
j/9 
-. - .  . . . . . . . . . . . . .  

r 
~. 

kilograms/meter3 (kg/m3; 
meters (m) 
meters (m) 

newtons/meter (N/m) 
meter-newtons (m-N) 
newtons/mete? ( N/m2) 
degrees Kelvin (OK) 

..... - . _--- ~ 

Physical quant i ty  I 
Density . . . . . . . . .  
Length . . . . . . . . .  
Load per u n i t  length; 

s t i f f n e s s  per  un i t  
length . . . . . . . .  

Moment . . . . . . . . .  
Stress;  modulus . . . . .  
Temperature . . . . . . .  

U.S. Customary 
U n i t  

.. - . . . . . . . .  

kips/in.  
in-kips 
k s i  
( O F  + 460) 

- .  . . . . .  

I 
Conversion f ac to r  I SI un i t  

*Multiply value given i n  U.S. Customary Unit by conversion f ac to r  t o  
obtain equivalent value i n  SI uni t .  

Prefixes t o  indicate  multiples of un i t s  a r e  as follows: 
................. 

Multiple 
. . . . .  L -__-___- 

Prefix 
~ ". .- 

giga (GI 1 109 
mega (MI 
k i l o  (k)  
c e n t i  ( c )  
m i l l i  (m) 

106 
103 
10-2 
10-3 

- - . . - .- . . . . . .  ..... -__- 
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1lI11111111l IIIII Ill1 II 

AJ?PENDM B 

DERIVATION OF COMPFESSIVE BUCKLING COEFFICIENTS FOR 

ORTHOTROPIC CYLINDERS WITH CLAMPED ENDS 

The equation of equilibrium governing the  buckling of orthotropic cylin- 
ders subjected t o  axial compression, i f  def lect ions from transverse shear are 
neglected, i s  (see ref. 11) 

where 

and 

Equation ( B l )  may be solved f o r  the buckling load by the  Galerkin method. 
(See r e f .  12 . )  
sented as 

In  t h i s  method, the  equilibrium equation (eq. ( B l ) )  i s  repre- 

where 

Q = J $ + -  7 a 4 + N, - a2 
R ax4 ax2 

The def lect ion function i s  ta.ken as 

m 

w = 

m = l  

10 



APPENDIX B 

where the  set of functions 
not s a t i s f y  the  equilibrium equation. The coeff ic ients  a m  are determined from 
the equation 

Vm m u s t  s a t i s fy  the boundary conditions but need 

The following def lect ion function satisfies boundary conditions f o r  clamped ends 
(see r e f .  12) : 

where Vm i s  seen t o  be 

(m + 1)m 1 (m - 1)m 
2 

- cos vm = s i n  ~ L o s  A 
2 

Substi tuting equations (B8) and (Bg) i n to  equation (B7) and integrat ing over the  
indicated limits yields  the  following equations : 

(m = 1) 7 
where 

M, = (m - 114 + 

- (m - 1 ) 2 ~  ( m  = l ,2 ,3 , .  . .) (B11) 

and where 

11 



APPEXDIX B 

In  writ ing equation ( B l l ) ,  use i s  made of t h e  reciprocal  re la t ionships  

and 

The condition necessary f o r  buckling can be represented by two subdetermi- 
nants of the coeff ic ients  of equations (BlO),  one for a buckle pa t te rn  symmetri- 
c a l  about the midpoint of the  cylinder and the  other  f o r  an antisymmetrical 
buckle pat tern ( ref .  13): 

and 

m = l  

m = 3  

m = 5  

m = 7  

m = 2  

m = 4  

m = 6  

m = 8  

2M1 + M3 

4 3  
0 

0 

42 + M4 

444 

0 

0 

0 

4 5  

M5 + M 7  

447 

0 

-% 

% + %  

-w 

0 

0 

447 

M7 + M 9  

0 

0 

-% 

M8 + M 1 0  

= 0 (B12) 

13 1 
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APPENDIX B 

Equations (Bl2) and ( B l 3 )  can be solved f o r  t h e  buckling coeff ic ient  k, 
by assuming values of t he  buckle parameter 
values of k,, and minimizing k, with respect t o  p. Values of p should 
be r e s t r i c t e d  so  t h a t  an i n t eg ra l  number of waves occurs i n  the  circumference 
of the  cylinder.  However, inasmuch as the  number of waves i s  usually large,  
p The buckling coeff ic ient  may be 
obtained t o  any desired accuracy by taking a su f f i c i en t ly  large number of terms 
i n  equations (B12) and ( B l 3 ) .  I n  reference 13, good accuracy w a s  obtained f o r  
conventional thin-wall cylinders with clamped ends by using only a second-order 
determinant. 

p, computing t h e  corresponding 

may be t r ea t ed  as a continuous function. 
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D e t a i l  A 

I 
S e c t i o n  A-A 

O u t s l d e  s k i n  --.? 
D e t a i l  B 

Figure 1.- Construction details of test cylinder. All dimensions are i n  inches. (Parenthetical dimensions are in centimeters.) 
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Figure 2.- Typical section from wall of test cylinder. L- 65- 1528 
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+ S t r a i n - g a g e  l o c a t i o n s  

-2 5 -2 0 -I 5 - I  0 -5 0 5 I O  15 20 25 
0 ,  d e g  

(a) Dimensions i n  inches. 

Figure 3.- Contour map showing init ial  imperfections i n  wall of test cylinder. 



+ S t r a i n - g a g e  l o c a t i o n s  
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(b) Dimensions in millimeters. 

Figure 3.- Concluded. 



Figure 4.- Test cylinder. L-64-5778 
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(a) Unetched. L-65-3159 

Figure 5.- Photomicrograph of section from wall of test cylinder showing oxidation and intergranular corrosion of wall. XIOO. 
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(b) Etched. 

Figure 5.- Concluded. 

L-65-3845 



4 . 0  

3 . 0  

N ,  

i n .  
k i p s  2.0 

I .o  

.o  

700 

600 

500 

400 
N ,  

kN 
m 
- 

300 

200 

IO0 

0 



Figure 7.- Setup for bending test of sandwich cylinder. L-64-5905.1 
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Figure 8.- Comparison between measured and calculated strain distribution i n  test cylinder. 
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Figure 9.- Strain in test cyl inder measured w i th  s t ra in  gages mounted on inside and outside face sheets of cyl inder in region of 

h igh  compressive stress. See f igure 3 for  gage locations. 
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L-64-6181 Figure 10.- Fai lure of test cylinder - outside view. 



Figure 11.- Failure of test cylinder - inside view. L-64-6402 
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Figure 12.- Correlation of fail ing load of test cylinder with buckling data on conventional thin-wall cylinders. 
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